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Abstract. We introduce MCUBench, a benchmark featuring over 100
YOLO-based object detection models evaluated on the VOC dataset
across seven different MCUs. This benchmark provides detailed data on
average precision, latency, RAM, and Flash usage for various input reso-
lutions and YOLO-based one-stage detectors. By conducting a controlled
comparison with a fixed training pipeline, we collect comprehensive per-
formance metrics. Our Pareto-optimal analysis shows that integrating
modern detection heads and training techniques allows various YOLO ar-
chitectures, including older models like YOLOv3, to achieve an excellent
mean Average Precision (mAP)-latency tradeoff. MCUBench serves as a
valuable tool for benchmarking the MCU performance of contemporary
object detectors and aids in model selection based on specific constraints.
Code and data are available at github.com/Deeplite/deeplite-torch-zoo.
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1 Introduction

In the realm of computer vision, object detection is a crucial task involving
the recognition and localization of objects within an image. This technology is
essential for various applications, including self-driving cars, security systems,
robotics, and augmented reality [4]. Recent advancements in artificial intelli-
gence (AI) have significantly propelled these applications forward, primarily due
to the increased processing power and memory capacity provided by special-
ized hardware like GPUs (Graphical Processing Units) for training and NPUs
(Neural Processing Units) for inference. However, many computer vision appli-
cations demand deployment at the edge, where considerations such as privacy,
low latency, and power efficiency are paramount. This creates a challenge in de-
ploying deep learning-based object detection models on tiny hardware platforms
like Microcontroller Units (MCUs), which have limited computational resources
and memory [14]. These constraints necessitate the development of efficient ob-
ject detection algorithms tailored for low-footprint devices including MCUs, are
often preferred for their affordability and widespread availability, despite their
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constrained hardware capabilities. Consequently, there is a pressing need for in-
novative object detection models that can deliver optimal performance on these
tiny, general-purpose devices, which are often available for just a few dollars.

YOLO (You Only Look Once) models have dominated the field of real-time
object detection since their introduction by Joseph Redmon et al. in 2016 [26].
Unlike most previous methods that employed a two-stage approach, YOLO uti-
lizes a single-stage network [21] to simultaneously predict bounding boxes and
class probabilities directly from full images. Combining these tasks in one pass
significantly enhances speed and efficiency. The evolution from YOLOv1 [26]
to the latest YOLOv8 [11] has brought about numerous improvements. New
YOLO versions have introduced new efficient backbone networks for feature ex-
traction, refined neck structures for better feature fusion, and detection heads
with options for anchor-based [3,10,16,26–28,41] anchor-free [8], and mixed ap-
proaches [11]. The integration of innovative loss functions [17] and sophisticated
training techniques, such as advanced data augmentation [12] and meticulous
hyperparameter optimization, have further boosted performance.

Despite these advancements, deploying YOLO models on resource-constrained
devices like Microcontroller Units (MCUs) remains challenging. Most of the
MCUs still use Single Shot Detector (SSD) [20] due to the ease of deployment
but SSD models are inferior in terms of performance. Even the smallest variants,
such as YOLOv5n, which is 7.6 MB in FP32 and about 2 MB when quantized
to 8-bit, are still too large for most MCUs, which typically have less than 2 MB
of Flash and 1 MB of RAM [37]. These strict hardware constraints motivate the
development of ultra-compact YOLO variants.

This paper aims to address these challenges by providing a benchmark of
more than hundreds of YOLO-based object detector model architectures gen-
erated under controlled conditions (e.g., the same training loop for all models)
to demonstrate the impact of the backbone and neck structure of YOLO-based
models on MCUs. First we train the models on the Pascal VOC dataset, then
we measure inference performance on four different Nucleo boards from STMi-
croelectronics. Finally, we identify the Pareto optimal set of models according to
their VOC average precision and on-device latency, released as the benchmark
called MCUBench.

We summarize our contributions as follows:

– We introduce MCUBench, a comprehensive benchmark of over 100 tiny
YOLO-based object detection models specifically designed for MCU-grade
hardware. These models are trained on the VOC dataset, and selected through
Pareto analysis across four different MCU platforms.

– We demonstrate that using modern detection heads and advanced train-
ing pipelines on backbones and necks from different YOLO versions reveals
unique performance trends on MCUs compared to more powerful hardware
like GPUs. Our benchmark highlights that even older models (e.g., YOLOv3)
equipped with new detection heads can outperform newer models on MCUs.

– We provide the trained weights of MCUBench models, enabling application
developers to select and fine-tune models based on their specific average
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precision, latency, RAM, and Flash trade-offs, without the need to train
multiple models independently.

2 Related Work

There is a growing interest in benchmarking deep learning models on MCUs,
as they offer an affordable solution for compact, low-power use cases. However,
there are still many open challenges and opportunities for further research, such
as improving the model compression and quantization techniques, exploring the
trade-offs between accuracy, speed, and energy, and developing more realistic
and diverse benchmark models and datasets.

MLPerf [25], a community-led benchmarking initiative, offers a benchmark-
ing suite for ML inference. However, this inference benchmark doesn’t sup-
port MCUs and other resource-limited platforms due to the absence of small
benchmarks and compatible implementations. To meet this need, [2] introduced
MLPerf Tiny, the first industry-standard benchmark suite for ultra-low-power
tiny machine learning systems. However, the benchmark only considers 4 simple
tasks including Keyword Spotting, Visual Wake Words, Image Classification on
CIFAR10 and Anomaly Detection. These are basic models and as of now they
don’t support more complicated tasks such as object detection.

EEMBC’s CoreMark [7] has gained popularity as the standard benchmark
for MCU-class devices, thanks to its user-friendly implementation and applica-
tion of real-world algorithms. However, it doesn’t fully profile entire programs
or accurately depict machine learning inference workloads. The consortium in-
troduced the MLMark benchmark [40] to fill this gap, but the models tested are
still too demanding for MCU devices. In a similar vein, YOLO models have pre-
viously been benchmarked for embedded systems with YOLOBench [15]. This
work tests 550+ YOLO-based object detectors on four datasets and hardware
platforms but this benchmark is applicable for edge devices with higher foot-
prints as compared to tiny MCUs.

Several other works [6, 13, 24, 42] have proposed methods to benchmark the
performance of various architectures from the YOLO series on server-grade and
embedded GPUs, as well as specialized accelerator target platforms. Again, we
observe that models from these benchmarks are not suitable for MCU devices.

We have seen that existing benchmark studies either offer models for ex-
tremely simple deep learning tasks, or models which exceed the memory and
compute constraints of MCUs. There is an evident and clear need for a TinyML
benchmark that accommodates a range of complex models on complex datasets,
enabling a more equitable comparison and benchmarking of MCUs for more
cutting edge industrial use cases.

3 Methodology

YOLO detectors can be differentiated based on their backbone, neck, and head
architectures. Other important factors, such as the total number of parameters,
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1. Build Initial Search Space

• Train models on VOC

• Evaluate latency on MCUs

2. Model Pre-selection

• Evaluate mAP vs latency
• Generate Pareto curves for each MCU
• Select subset of models

3. Expand Search Space

• Train selected models on VOC

• Evaluate latency on MCUs

4. Final Model Ranking
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Fig. 1: Flowchart of the MCUBench process for model candidate generation, pre-
selection and ranking. Pareto-optimal points are depicted as orange crosses.

Table 1: MCUBench architecture space (variation of backbone/neck, depth, width,
activation function and input resolution).

Model Backbone Neck Depth Factors

YOLOv3 [28] DarkNet53 FPN {0.125, 0.16, 0.20, 0.25}
YOLOv4 [3] CSPDNet53 SPP-PAN {0.125, 0.16, 0.20, 0.25}
YOLOv5 [10] CSPDNet53-C3 SPPF-PAN-C3 {0.125, 0.16, 0.20, 0.25}
YOLOv6s-3 [16] EfficientRep RepBiFPAN {0.085, 0.125, 0.16, 0.20, 0.25}
YOLOv7 [41] E-ELAN SPPF-ELAN-PAN {}
YOLOv8 [11] CSPDNet53-C2f SPPF-PAN-C2f {0.20, 0.25}

Activation Function ∈ {ReLU, SiLU}
Input resolution ∈ {128, 160, 192, 224}

Width factor ∈ {0.05, 0.085, 0.125, 0.16, 0.20, 0.25}

training pipeline, hyperparameters, choice of loss, and activation function, also
contribute to improving the performance of these models. This benchmark stud-
ies the effect of the backbone, neck, activation function, and total parameters
(width, block depth, and input resolution) on evaluation metrics like average
precision, latency, and RAM requirements. To highlight the influence of the se-
lected factors, the detection head architecture, training pipeline, loss function,
and hyperparameters are kept fixed throughout the benchmark process.

For the current benchmark process on MCU devices, we use a decoupled de-
tection head from YOLOv8 [39]. This head is chosen for its anchor-free nature,
which provides latency benefits in end-to-end detection pipelines [22]. The same
loss function as YOLOv8 (CIoU and DFL losses) is used to predict bounding
boxes. The training pipeline and hyperparameters are borrowed from the Ultr-
alytics [11] code due to its simplicity and ability to reproduce state-of-the-art
(SOTA) results.

For designing the candidate architectures of the YOLO detectors, the cur-
rent work varies the constituent backbone and neck from the available options
while keeping the head fixed from YOLOv8. Usually, the scaling variants con-
sidered for these architectures are from (n, s, m, and l) but even the smallest
variation Y OLOv{family}n is more than 2 MB in size (INT8 quantized model)
and it does not fit in MCU memory constraints which necessitates the use of
smaller scaling variants. These scaling factors and choice of activation function
can influence the latency, RAM, Flash and mAP of these models. While the
Sigmoid-Weighted Linear Units (SiLU) [29] activation function is generally used
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for detection tasks across all YOLO families to achieve state-of-the-art (SOTA)
results, we utilized both ReLU [1] and SiLU activation functions to address both
average precision and latency aspects. The flow of candidate model generation,
along with possible variations, is shown in 1.

We utilized six mainstream YOLO family models (YOLOv3 to YOLOv8)
with six variations in width factors and two variations in activation function.
Each YOLO family has different variations in block depth factors due to differ-
ences in their maximum block depth. For example, in YOLOv7, the depth of
a block is always fixed at 1, so multiplying any depth scaling factors will not
produce new variants. Additionally, we used four variations of input resolution
from 128 × 128 to 224 × 224, with a step of 32, to generate the final Pareto
frontier models. For YOLOv6, v3.0 provides different architectures for s, m, and
l variations. Although the current work proposes custom variations in width and
depth scaling factors and activation function variations, these could have been
introduced on all the original s, m, and l architectures. However, for this bench-
mark process, the YOLOv6 v3.0 s architecture is used as the base form, over
which other variations in input resolutions, width/depth factors, and activation
functions are introduced.

3.1 Hardware Benchmarking

Table 2: Specifications of MCUs used for benchmarking. *Note: The total memory
may be higher for some boards; only the memory allocated for AI applications is listed.

Device ARM Cortex Core Flash [kB] RAM [kB]
Int Ext Int Ext

NUCLEO-H743ZI [35] M7 @480 MHz 2048 N/A 1024 N/A
B-U585I-IOT02A [30] M33 @160 MHz 2048 65536 768* N/A
STM32F469I-DISCO [36] M4 @180 MHz 2048 16384 384 16384
STM32F769I-DISCO [37] M7 @216 MHz 2048 65536 512 16384
STM32H573I-DK [31] M33 @250 MHz 2048 65536 640 N/A
STM32H747I-DISCO [38] M4+M7 @400 MHz 1024* 131072 704* 8192
STM32L4R9I-DISCO [32] M4 @120 MHz 2048 65536 640 N/A

The actual inference latency for each model can vary significantly depending
on the RAM, Flash, processor type, and clock frequency. Therefore, we collected
the memory and latency measurements for each model by running inferences on
seven different boards with MCUs, as described in Table 2.

Hardware Details We selected a diverse range of boards with MCUs to cap-
ture various performance characteristics. The STM32H7 series, including the
STM32H747I-DISCO [38] and NUCLEO-H743ZI [35], are included for their
high-performance capabilities. The STM32F4 and STM32F7 series, represented
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by the STM32F469I-DISCO [36] and STM32F769I-DISCO [37], are known for
their advanced graphics and display support. The B-U585I-IOT02A [30] and
STM32H573I-DK [31], featuring Cortex-M33 processors, offer secure connectiv-
ity and are suitable for various applications. Finally, the STM32L4 series, like
the STM32L4R9I-DISCO [32], is selected for its ultra-low power consumption.
Each MCU offers different configurations of RAM, Flash, processor type, and
clock frequency, allowing us to evaluate their performance across a variety of
models.

Benchmarking Approach We used the ST Microelectronics developer cloud [33]
to gather memory and latency information by running the models on actual hard-
ware. The ST Developer cloud exposes a RestAPI, which we utilized to automate
the collection of memory and latency data for multiple models across multiple
MCUs in parallel. To compile the models from TFLite, we used ST Microelec-
tronics’ latest XCubeAI tool [34] (version 9.0). XCubeAI is a cloud hosted tool
which allows selection of different MCUs, compile and test AI models without
any need to have the actual physical device. This virtualization allowed us to run
hundreds of models on a range of different MCUs. This is the main reason of us-
ing all the MCUs from ST family (with different speed and memory constraints).
Models initially in the ONNX format [23] (FP32) were converted and quantized
to TFLite [19] (INT8) using the onnx2tf [9] library. During this conversion, we
ensured that both input and output were kept in UINT8 format and applied per-
tensor quantization. This approach was chosen to optimize performance while
maintaining compatibility with the hardware. All latency measurements were
performed with a batch size of 1, averaged over multiple inference cycles. We
measured the inference time required to execute the YOLO model graph, includ-
ing bounding box decoding post-processing operations performed after the last
convolutional layers of the network. Other bounding box post-processing steps,
such as non-maximum suppression, were excluded from these measurements.

Memory Consumption Analysis: Flash and RAM Internal Flash memory
is used to store the model’s weights and architecture. In cases where the model
size exceeds the available internal Flash, execution will fail if the MCU relies
only on internal memory. However, MCUs with external memory can load larger
models without failure. For instance, models that could not fit in the internal
Flash of the NUCLEO-H743ZI were successfully executed on the STM32H747I-
DISCO due to its external memory support. RAM is utilized for storing inter-
mediate computations and activations during inference. Higher RAM capacity
enables more efficient handling of these computations, reducing latency. MCUs
with external RAM support can handle higher resolution inputs and complex
models without memory limitations. For example, we noticed that models with
higher resolution inputs failed on the B-U585I-IOT02A but ran successfully on
the STM32H747I-DISCO, which has more RAM (internal and external com-
bined) and demonstrated better performance metrics compared to MCUs with
less RAM.
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Impact on Latency The amount of available RAM directly impacts the in-
ference time of the models. MCUs with higher RAM typically show reduced
latency due to the ability to store intermediate computation results more effi-
ciently. For instance, the STM32H747I-DISCO, with its higher RAM capacity,
demonstrated significantly lower latency compared to the STM32L4R9I-DISCO,
which has comparatively less RAM. This reduction in latency is crucial for real-
time applications where prompt responses are necessary. Flash memory vari-
ations also affect latency, particularly in terms of loading and initializing the
model weights and architecture. MCUs with larger Flash memory, such as the
NUCLEO-H743ZI, exhibited faster model initialization and lower overall latency.
This is due to the reduced need for frequent memory accesses and the ability to
store more of the model’s parameters internally, minimizing the delays associated
with external memory accesses. Clock cycle variations play a significant role in
determining the inference time of the models. Higher clock frequencies generally
lead to faster processing speeds, as more instructions can be executed per sec-
ond. For example, the NUCLEO-H743ZI, operating at a higher clock frequency,
showed improved latency performance compared to the STM32H747I-DISCO,
which operates at a slightly lower clock frequency. The increased clock speed
allows for quicker data processing and shorter execution times, which is partic-
ularly beneficial for computationally intensive tasks within the YOLO model.

3.2 Model Selection Procedure

We now present the four main steps of our benchmarking procedure, all sum-
marized in Figure 1. First, we (1) built the initial search space by fixing the res-
olution and scaling between YOLO family, activation, depth, and width. Then,
we (2) preselected Pareto models for each hardware to select a subset. Next, we
(3) scaled the resolution, and finally, we (4) generated the final Pareto models.

To evaluate potential model candidate architectures, we used the PASCAL
VOC dataset [5], which includes 20 object categories. All 240 models were trained
from scratch using the Ultralytics YOLOv8 [11] training pipeline, default VOC
hyperparameters, and DFL & CIoU losses for 100 epochs. We trained these
models at a higher resolution (448×448) to use them as pretrained models for
fine-tuning at smaller resolutions. No pretrained weights, such as backbone pre-
training on ImageNet, were used.

Step 1 – Build Initial Search Space The first step involves generating the
initial set of models by training 240 models at a resolution of 448×448 and then
fine-tuning them at a resolution of 192 × 192 for 10 epochs. At this stage, we
kept the resolution fixed at 192×192 while scaling the YOLO version, activation
function, depth, and width. We then evaluated the models by exporting them
to TFLite and running them on seven different MCUs to gather RAM, Flash,
and latency data. It is important to note that not all models were able to run on
all MCUs due to memory constraints, unsupported operations, etc. The actual
number of models with available benchmark results is mentioned in Table 1. For
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example, the NUCLEO-H743ZI was able to run only 96 out of 240 models in this
step. All models with benchmark results and mAP values constitute the search
space models.

Step 2 – Model Pre-selection In the second step, models were preselected
based on their latency vs mAP Pareto optimality. This was done for each device
to build the seven Pareto curves. Only the Pareto-optimal solutions for each
MCU were selected to proceed to further steps 3 and 4. For this procedure, the
mAP@50 values from all variants fine-tuned at a resolution of 192 × 192 were
used, along with the latency measurements obtained from performing inference
on all available MCU platforms. We identified Pareto-frontier models for each
device based on the list of models that ran smoothly on that platform. Finally, we
merged the lists from all devices to form the "First Pareto Set." This set contains
a total of 159 models across different devices, of which 72 were unique across
all the boards (e.g., 21 Pareto models were selected from the NUCLEO-H743ZI
MCU, as shown in Table1).

Step 3 – Expand Search Space At this stage, the models selected from Steps
1 and 2 were used to generate an expanded search space. We scaled the input
resolution to three more levels apart from 192× 192: 128× 128, 160× 160, and
224 × 224 and further fine-tuned these models on the VOC dataset. This fine-
tuning happened for 10 epochs, starting from the trained weights of 448× 448.
Mosaic-augmentation was disabled after the 5th epoch to follow the Ultralyt-
ics training pipeline. While more epochs could enhance model convergence, 10
epochs were deemed sufficient for benchmarking.

Step 4 – Final Model Ranking In the final stage, the models from Step
3 were evaluated on the seven MCUs to build new Pareto curves. We ran 72
models at four different resolutions (128, 160, 192 and 224) on all seven devices
and collected benchmark results.

4 Results

The benchmarking procedure consisted of four main steps: building the initial
search space, model pre-selection, expanding the search space, and generating
the final Pareto curves. We started with the evaluation of 240 YOLO model
variants on 7 different MCUs, generated Pareto frontiers of 72 models, expanded
the search space to 288 models by training at different resolutions, and finally
analyzed the 131 Pareto-optimal models. Below, we present the results for each
step in detail.

For clarity, we provide the number of models for each of the steps mentioned
above, as shown in Table 3. Notably, the number of models in Step 1 is less than
240 for each device, as some models failed to run, because of the presence of not-
yet supported operators in the architecture by the board, or exceeding memory
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Table 3: Summary of results for Pareto-optimal models across various MCU platforms.
The table presents the number of models at each stage of the benchmarking process.

Device Step 1 Step 2 Step 3 Step 4

NUCLEO-H743ZI 96 21 156 41
B-U585I-IOT02A 226 23 254 27
STM32F469I-DISCO 36 12 71 49
STM32F769I-DISCO 85 23 165 47
STM32H573I-DK 117 29 181 47
STM32H747I-DISCO 149 28 164 50
STM32L4R9I-DISCO 109 23 208 34

Total Models 818 159 1191 296
Unique Pareto Models 72 131

(Flash and RAM) limitations. For eg. even after NUCLEO-H743ZI has highest
clock frequency among all the devices, we could only run 96 models because of
the absence of external Flash. Models beyond 2048 kB size failed to run on this
device. B-U585I-IOT02A has most of the models supported as it has external
Flash to fit more models.

4.1 Model Pre-Selection

The initial step involved evaluating 240 YOLO model variants on various MCUs.
The Pareto frontiers were generated by comparing mean Average Precision (mAP)
versus latency for each model, resulting in a subset of models for each device.
Figure 2 shows the Pareto fronts for 4 MCUs, while the detailed results for all 7
MCUs are reported in the Appendix (Figure 5). Different YOLO model families
are represented by distinct marker types and colors, with the Pareto frontier
highlighted by dashed lines. We observe that the types of Pareto-optimal mod-
els vary by device. For example, the NUCLEO-H743Z has a large number of v6
models, while the B-U585I-IOT02A and STM32H573I-D show a majority of v6,
v7, and v8 models in the Pareto curve.

It is also evident that the absolute latency values vary significantly across
devices. For instance, the maximum latency observed for the NUCLEO-H743ZI
is around 1 second, whereas the STM32L4R9I-DISCO experiences latencies up
to 12 seconds. This disparity highlights the different performance capabilities
and constraints of the various MCUs.

In Step 1, the total number of models tested across all devices was 818.
However, as shown in Table 3, the Pareto frontiers were computed for each device
to filter the models down to 159. After combining the results from all devices to
identify the unique Pareto-optimal models, we found 72 unique models. These
models were then used for the subsequent steps (Step 3 and Step 4) mentioned
in section 3.2.
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Fig. 2: Pareto frontiers of MCUBench models trained on the VOC dataset (on several
target resolutions) 4 different hardware platforms. Each point represents a single model
in the mAP-latency space, with the model family coded with color and marker shape
(all YOLOv6-3.0 models are represented by the same color).

4.2 Pareto Analysis: mAP vs Latency

In this section, we present the results from steps 3 and 4 (section 3.2) of our
benchmark flow. Initially, we selected 72 unique models and fine-tuned them
for additional epochs on the VOC dataset at four different resolutions. We then
evaluated the latency of these models on 7 different hardware platforms.

The total number of models evaluated in step 4 was 1191. From these, we
selected the Pareto-optimal models for each device, resulting in 296 models.
However, only 131 of these models were unique across all devices, as shown in
Table 3.

In Figure 3, we present the Pareto frontiers for all 7 devices. Each marker
corresponds to a different device, as indicated in the legend. This visualization
allows us to compare the performance and efficiency of the models across various
hardware platforms. The Pareto curves highlight the trade-off between mean
Average Precision (mAP) and latency, with the goal of identifying models that
achieve high accuracy with minimal latency. The plot shows that NUCLEO-
H743ZI is the most powerful compared to others because the latency of the most
accurate model is around one second and STM32L4R9I is the least powerful as
the latency for highest mAP model is almost 10 seconds. STM32F769I-DISCO
and STM32F769I-DISCO and comparable devices as Pareto curve for these two
have a strong correlation. Also, apart from dependence on model complexity,



MCUBench 11

0.0 2.0 4.0 6.0 8.0 10.0
Latency [s]

0.10

0.15

0.20

0.25

0.30

0.35

0.40
VO

C 
m

AP

NUCLEO-H743ZI
B-U585I-IOT02A
STM32F469I-DISCO
STM32F769I-DISCO
STM32H573I-DK
STM32H747I-DISCO
STM32L4R9I-DISCO

Fig. 3: Combined Pareto Fronts for All Devices. This plot illustrates the Pareto-
optimal models on the VOC dataset across various MCU hardware platforms. The
x-axis represents latency (in seconds), and the y-axis represents mAP. Each marker
corresponds to a different hardware platform, with the faded markers representing
all tested models and the solid markers representing the Pareto-optimal models. The
dashed lines connect the Pareto-optimal models for each device. The details of the
minimum and maximum latency solutions for each device are summarized in Table 5.

latency also depends greatly on the extent of use of external memory. For eg.
B-U585I-IOT02A with 764 KB RAM might perform better for larger models
compared to STM32F769I-DISCO with 512 KB RAM even if the former is less
powerful (160 MHz vs 216 MHz).

Table 4 shows the distribution of YOLO model families for each board eval-
uated. Interestingly, even older YOLO architecture families can produce opti-
mal models when trained using modern techniques. For example, the B-U585I-
IOT02A and STM32L4R9I-DISCO boards include 15 and 10 YOLOv3 models,
respectively, in their Pareto lists, out of a total of 27 and 34 Pareto models.
Conversely, only 1 and 3 YOLOv8 models appear in the Pareto lists for same
two devices. YOLOv5 models are evenly placed in Pareto list of all devices and
YOLOv4 is not present in any of these devices.

The YOLOv6 family is the most common in the Pareto lists, predominantly
due to its ability to produce small, fast models that achieve minimal latency. This
is more a reflection of the model configuration, specifically the deeper maximum
block size that allows for effective depth scaling, rather than an inherent supe-
riority of the YOLOv6 architecture. Interestingly, the B-U585I-IOT02A board
include just 2 of YOLOv6 models in its Pareto list, highlighting the variability
in performance across different hardware configurations. This also suggests that
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Table 4: Distribution of Pareto models: number of models per family and activation
function across different devices.

Device Model Family Activation Total
v3 v4 v5 v6 v7 v8 ReLU SiLU

NUCLEO-H743ZI 2 0 8 24 4 3 6 35 41
B-U585I-IOT02A 15 0 9 2 0 1 10 17 27
STM32F469I-DISCO 0 0 9 17 6 17 13 36 49
STM32F769I-DISCO 0 0 8 23 6 10 12 35 47
STM32H573I-DK 0 0 10 19 6 12 5 42 47
STM32H747I-DISCO 0 0 10 25 5 10 25 25 50
STM32L4R9I-DISCO 10 0 1 16 4 3 4 30 34

the benefits seen in YOLOv6 models on other boards are not universally appli-
cable and depend heavily on the specific hardware characteristics. Figure 2 also
shows that most of the lower latency models are each hardware is from YOLOv6
family due to the reason mentioned above.

Table 5 shows the minimum and maximum latency solutions for each device.
YOLOv6 models are predominant in all minimum latency solutions, while maxi-
mum latency solutions include most of the models YOLOv7 family. There is one
exception for STM32F469I-DISCO where both minimum and maximum latency
solution is from YOLOv3. This indicates that while YOLOv6 models excel in
achieving low latency, they do not necessarily outperform other models in all
aspects. The resolution analysis follows the general rule that lower resolutions
result in faster models and higher resolutions in slower models.The fastest model
in our benchmark (with 0.08 mAP) has 0.10 latency on NUCLEO-H743ZI de-
vice and the most accurate model has 0.41 mAP with latency of 2.21 seconds on
STM32H747I-DISCO (on VOC dataset).

4.3 Scaling Parameters Analysis: Depth, Width, Resolution,
Activation

To further establish the best parameters to effectively scale when deploying
object detectors on MCUs, we analyzed the impact of three main parameters in
the final Pareto models. The boxplots in Figure 4 illustrate the impact of depth,
width, and resolution on mAP.

It is clear from the boxplots that increasing resolution and width generally
leads to higher mAP values, indicating their strong influence on model perfor-
mance. For instance, increasing the resolution from 128 to 224 results in more
than double the mAP. Similarly, increasing the width factor from 0.05 to 0.25
shows a significant improvement in mAP. This consistency in improvement high-
lights the importance of optimizing resolution and width for enhancing model
performance.
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Table 5: Summary of Pareto frontiers for each device. This table presents the Pareto-
optimal MCUBench models on the VOC dataset across various MCU hardware plat-
forms. For each device, the models are selected based on achieving the best mAP50−95

under given latency constraints (both minimum and maximum latency). The scaling
parameters (depth and width factors) are denoted as dXXwYY, where dXX means
depth factor = 0.XX and wYY means width factor = 0.Y Y . The input resolution of
the models is also reported.

Device Min. Latency Solution Max. Latency Solution
Model Scaling Res. (Lat., mAP) Model Scaling Res. (Lat., mAP)

NUCLEO-H743ZI v6 d85w50 128 (0.10, 0.08) v7 d250w160 224 (1.30, 0.35)
B-U585I-IOT02A v6 d85w50 128 (0.40, 0.07) v7 d250w250 224 (8.80, 0.39)
STM32F469I-DISCO v3 d160w125 128 (1.00, 0.17) v3 d250w250 224 (9.23, 0.39)
STM32F769I-DISCO v6 d85w50 128 (0.22, 0.08) v7 d250w250 224 (4.37, 0.39)
STM32H573I-DK v6 d85w50 128 (0.26, 0.07) v7 d250w250 224 (5.04, 0.39)
STM32H747I-DISCO v6 d85w50 128 (0.12, 0.08) v7 d250w200 224 (2.21, 0.41)
STM32L4R9I-DISCO v6 d85w50 128 (0.66, 0.07) v7 d250w250 224 (12.80, 0.39)

0.085 0.125 0.16 0.2 0.25
Depth

0.1

0.2

0.3

0.4

m
AP

0.05 0.085 0.125 0.16 0.2 0.25
Width

128 160 192 224
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Fig. 4: Statistics of model scaling parameters (depth factor, width factor, input reso-
lutions) in Pareto-optimal models on VOC (Step 4) across 7 different MCUs. The plot
highlights trends for width and resolution, where increased values correspond to higher
mAP, while depth shows less consistent improvement.

In contrast, the depth parameter shows more variability and a less consistent
impact on mAP. The mAP values for depth factors ranging from 0.085 to 0.25
do not exhibit a clear trend of improvement. This suggests that depth adjust-
ments are less effective compared to resolution and width optimizations. The
variability in depth impact could be due to the increased complexity and poten-
tial overfitting, which might not translate to better performance on constrained
devices like MCUs.

Figure 4 shows that the mAP increases from approximately 0.1 at a resolution
of 128 to over 0.35 at a resolution of 224. Similarly, increasing the width factor
from 0.05 to 0.25 results in a substantial increase in mAP, reaching above 0.4 for
the highest width factor. Depth, on the other hand, does not show a significant
upward trend, with mAP values fluctuating between 0.1 and 0.3 across different
depth factors.

Changing Activations does not affect FLASH and MACs but it affect latency
moderately (SiLU is slower compared to ReLU) but RAM SiLU model consumes
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considerably more RAM and it can adversely affect latency when internal RAM
is not sufficient.

Overall, these observations suggest that focusing on optimizing resolution
and width is more beneficial for improving model performance on MCUs than
adjusting depth. This insight is crucial for developing efficient object detection
models that perform well under the constraints of MCU hardware.

5 Conclusion

In this work, we present MCUBench, a latency-mAP benchmark of hundreds
of YOLO-based models specifically designed for constrained devices like MCUs
(less than 4 MB quantized models). We apply our method to 7 MCUs with dif-
ferent specifications, using models trained on the VOC object detection dataset.
The mAP, latency, RAM, and Flash data are collected in a fixed, controlled
environment with independent variables of model width, block depth, activation
function, and input image resolution. The data suggests interesting character-
istics of these models on different MCUs. Our model scaling results reveal that
optimizing resolution and width is more effective for enhancing model perfor-
mance compared to block depth adjustments. MCUBench is the first benchmark
to combine the mainstream task of object detection with the strict constraints
of MCU deployment. This benchmark can aid in selecting models for a target
device and accuracy budget without the need for costly model training and eval-
uation. It can also compare the performance of different MCUs on the same set
of models.

6 Future Work

Currently, MCUBench models are trained on the VOC dataset to create a
large search space for model selection. However, VOC data is simpler compared
to mainstream datasets like COCO [18]. Future work will train Pareto models
on the COCO dataset for more generalized models and explore simpler object
detection tasks, such as person detection, which are suitable for cheaper MCUs in
smart home devices. This study currently uses only STMicroelectronics boards,
but future work could include boards from other vendors like Sony, Renesas and
Infineon. We also plan to add models generated by compression methods and
compare them with those generated using the search space defined in this paper.
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Appendix

In this appendix, we provide supplementary details to support the main findings
of our study, including a comprehensive figure illustrating the combined Pareto
fronts for all 7 MCUs in the pre-selection step (Figure 5).
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Fig. 5: Combined Pareto frontiers of MCUBench models fine-tuned on the VOC
dataset at several target resolutions on 7 different MCUs. Each point represents a
single model in the mAP-latency space, with the model family coded with color and
marker shape.
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